

MIcroscopic Biological Simulator

Руководство пользователя

МФТИ 2015

Содержание

Введение	3
Описание модели	4
Работа в программе	7
Технические требования	12
О разработчике	13

Введение

Microscopic Biological Simulator (Микроскопический биологический симулятор) - система визуального моделирования биологических систем на плоскости.

Назначение системы — моделирование развития колоний одноклеточных микроорганизмов в ограниченной среде. Программа позволяет в реальном времени отслеживать процесс развития колоний, эволюцию клеток, взаимодействие организмов разных видов.

Программа моделирует основные концепции живого мира: движение, питание, размножение делением, мутации, смерть.

Система основана на математической модели, включающей ряд задаваемых пользователем коэффициентов. Также пользователь может менять некоторые макроскопические параметры среды обитания организмов и создавать случайные колонии. Таким образом, можно исследовать зависимость развития колонии от экзогенных факторов и начального состояния.

Основное назначение системы – моделирование биологических экспериментов.

Описание модели

Моделирование проводится в «мире» представляющем собой прямоугольник с размерами WS_x, WS_y. Мир характеризуется уровнями освещённости LightLevel и радиации RadiationLevel, одинаковыми во всех точках.

Мир содержит «клетки». Геометрически клетка — это круг, который задаётся координатами центра и радиусом.

Каждая клетка имеет ДНК — строку из 11 байтов. ДНК полностью определяет внешний вид и поведение клетки. Ниже перечислены все задаваемые ДНК параметры и формулы их вычисления по ДНК.

Параметр	Тип	Описание	Формула
CellColor	Color	Цвет тела клетки	RGB(DNA[0], DNA[1], DNA[2])
BorderColor	Color	Цвет границы клетки	RGB(DNA[3], DNA[4], DNA[5])
CellRadius, R	int	Радиус клетки, рх	(DNA[6] % Rmx)+1
BorderWidth	int	Ширина границы клетки,	DNA[7] % 8
		рх	
v_max	float	Макс. скорость движения,	DNA[8] * 10 ⁻⁵ *m2
		рх/сек	
legs	int	Число ножек	x[8] / 12
<pre>movement_confidence</pre>	int	Время собственного	(DNA[9]+5) * 100
		движения	
PhStEff	float	Эффективность	DNA[1] /256
		фотосинтеза	
BasicEnergy	int	Базовый уровень энергии	CellRadius * E0
DivideExcess	float	Избыток энергии для	1 + (255 - DNA[0]) * (k6 / 255)
		деления	
legs_len	float	Длина ног (от центра,	1 + (DNA[9] / 255);
		отнесённая к радиусу)	

Здесь DNA[i] — i-й байт ДНК (целое число от 0 до 255), RGB(r,g,b) — цвет, заданный интенсивностями красной, зелёной и синей компонент.

Кроме того, клетка имеет геометрические координаты Pos.X, Pos.Y и уровень жизненной энергии (эквивалент питательных веществ) Energy.

Моделирование выполняется шагами, каждый шаг моделирует изменение состояния клеток за промежуток времени **dt**, по умолчанию равный 50 мс.

На каждом шагу для каждой клетки выполняются следущие действия:

1. Движение.

Клетка смещается на вектор

$$dr = \left(\overrightarrow{e_r} \; \frac{m1}{1000 \; R} + \overrightarrow{v_{self}}\right) dt$$

Первый член – броуновское движение, второй –собственное.

Здесь $\overrightarrow{v_{self}}$ - вектор собственной скорости, который случайным образом меняется в среднем один раз за время movement confidence, по формуле:

$$\overrightarrow{v_{self}} = \frac{v_{max}}{\sqrt{2}} \overrightarrow{e_r}$$

 $\overrightarrow{e_r}$ - случайный вектор:

$$\overrightarrow{e_r} = \binom{rnd[-1,1]}{rnd[-1,1]}$$

2. Изменение энергии.

Прирост за счёт фотосинтеза:

$$\Delta E_1 = k_1 \cdot Light Supply \cdot PhStEff \cdot dt$$

Расход на метаболизм:

$$\Delta E_2 = -k_2 \cdot R \cdot dt$$

Расход на движение:

$$\Delta E_3 = -k_3 \cdot \left| v_{self} \right| \cdot dt$$

Здесь LightSupply – освещённость, скорректированная возможным затенением от перенаселения:

$$LightSupply = LightLevel \cdot \min\left[\left(1, \frac{WS_x \cdot WS_y}{\sum_i \pi R_i^2} \cdot \frac{1}{k_4}\right)\right]$$

Суммирование ведётся по всем клеткам.

Если в результате этих изменений энергия клетка стала равна нулю или меньше нуля, она умирает.

3. Деление.

Если выполняется условие Energy >= DivideExcess*BasicEnergy, клетка делится. То есть, на том же месте создаётся новая клетка с таким же ДНК, полвина энергии текущей клетки переходит к новой клетке.

Новая клетка может мутировать: каждый бит её ДНК меняется на противоположный с вероятностью $\frac{RadiationLevel}{10000}$.

4. Поглощение других клеток.

Клетка поглощает все клетки, центр которых покрывается данной клеткой, а радиус меньше, чем у данной на k5. При этом её энергия увеличивается на уровень энергии поглощённой клетки, а поглощённая клетка умирает.

При создании новых клеток их уровень энергии устанавливается равным BasicEnergy.

В вышеприведенных формулах упоминались коэффициенты k₁, k₂, k₃, k₄, k₅, k₆, m₁, m₂, E₀, R_{max}. Эти параметры, а также уровень радиации и освещённости мира пользователь может задавать вручную. Рекомендуемые значения установлены по умолчанию.

Работа в программе

Интерфейс программы состоит из главного окна и панели управления.

Главное окно

Главное окно отображает моделируемый мир и содержит главное меню. Его размеры можно произвольно менять. Масштаб мира можно менять колёсиком мыши, а перемещаться по миру можно, двигая мышь с зажатой правой кнопкой.

Главное меню

Главное меню расположено в верхней части главного окна. Оно содержит следующие опции. В скобках указаны горячие клавиши для вызова этих опций.

- Мир (World)
 - New world (F3) создать новый мир, размеры указать на вкладке World панели управления.
 - о Clear удалить все клетки.
 - Load (Ctrl+O) загрузить параметры мира из текстового файла.

- Save (Ctrl+S) сохранить параметры мира в текстовый файл (сами клетки не будут сохранены).
- Save image сохранить текущее изображение мира в графический файл.
- Правка (Edit)
 - New population (F2) создаёт новую колонию с заданным количеством случайных клеток. Параметры указать на вкладке World панели управления.
 - Return initial population (Ctrl+Shift+R) вернуть первоначальный набор и положение клеток.
 - Add Cells (Shift+F2) добавить клетки. Параметры указать на вкладке World панели управления.
- Вид (View)
 - Full Screen (F11) полноэкранный режим. В полноэкранном режиме масштабирование и навигация возможны с помощью мыши, как и в оконном режиме. Для выхода из полноэкранного режима нажмите F11.
 - Reset Scale (F12) устанавливает масштаб равным 1.
 - Fit window (F10) сърасывает масштаб и изменяет размер окна так,
 чтобы в нём поместился полностью весь мир и ничего более.
 - Control Panel (F8) ыскрывает или отображает панель управления.
- Моделирование (Modelling)
 - Start/Stop (F5) если моделирование остановлено, начинает моделирование. Если моделирование идёт, останавливает его.

Панель управления.

Панель управления содержит четыре вкладки: Информация (Info), Моделирование (Modelling), Настройки (Settings), Мир (World).

x

8

Вкладка «Информация»

На этой вкладке выводится следующая информация: численность поппуляции (Population), её относительный прирост (Birth Rate), средняя энергия популяции (Average Energy), абсолютный прирост энергии (Energy Increase), общая площадь (Total square), занимаемая клетками, время моделирования (Model time) — в секундах, от создания новой колонии, размер поля (Wolrd size) и производительность (Performance).

Производительность указывается как отношение времени, затрачиваемого на моделирование одного шага (мс), к времени, которое на это отводится.

Также на вкладке отображается график изменения численности колонии за последние 50 секунд.

Вкладка «Моделирование»

Можно управлять скоростью моделирования, меняя два параметра: время шага (Model step) dt в милисекундах (10...500) и относительную скорость Speed (0,1...10). Моделирование будет выполняться по таймеру с интервалом (dt/Speed) милисекунд, но по времени мира за один такт будет проходить dt мс.

Также на вкладке можно приостановить и возобновить моделирование. Флажок «stop when overloaded» обеспечивает автоматическую остановку моделирования, если коэффициент производительности превысит 2.

Вкладка «Настройки»

Содержит поля для ввода всех парвметров мира: LightLevel, RadiationLevel, k_1 , k_2 , k_3 , k_4 , k_5 , k_6 , m_1 , m_2 , E_0 , R_{max}

Вкладка «Мир»

- Новый мир (New World) создайт новый мир с указанными размерами.
- Новая популяция (New Population) создаёт новую колонию с заданным количеством случайных клеток. Если установлен флажок «The Same Cells», то все клетки будут одинаковыми.
- Добавить клетки (Add Cells) добавляет к существующей колонии заданное количество случайны клеток. Если установлен флажок «The Same Cells», то все клетки будут одинаковыми.
- Очистить (CLEAR) удаляет все клетки.

Внизу панели управления справа находятся два цветовых индикатора, отображающих параметры Birth Rate и Energy Increase цветом от красного до зелёного. Красный цвет – отрицательное значение, зелёный цвет – положительное.

Внизу панели управления справа находится знак, показывающий, включено ли сейчас моделирование.

Технические требования

Для работы программы требуется компьютер под управлением OC Windows 7 и выше с установленным .NET Framework 4.

Рекомендуемые технические характеристики компьютера: частота процессора 1,4 ГГц, RAM 4 ГБ, видеокарта ATI Mobility Radeon HD 6650 или аналогичная, мышь.

О разработчике

Продукт создан Федоряка Дмитрием Сергеевичем, студентом Московского физикотехнического института в ходе выполнения курсовой работы.

e-mail: fedimser@yandex.ru

сайт: mitay.at.ua/mibis.html

Авторские права на продукт сохраняются за разработчиком.